K(+)-induced HSP-72 expression is mediated via rapid Ca(2+) influx in renal epithelial cells.
نویسندگان
چکیده
Pathophysiological stimuli, including hypoxia, lead to K(+) efflux from the intracellular lumen to the extracellular space, thereby increasing local tissue K(+) concentrations and depolarizing resident cells. In this study, we investigated the effects of increased extracellular K(+) concentrations ([K(+)](e)) on heat shock protein (HSP) expression in the porcine proximal tubule epithelial cell line LLC-PK(1). We analyzed HSP-25, HSP-72, HSC-73, and HSP-90 protein expression by Western blot analyses and HSP-72 promoter activity by luciferase reporter gene assays using the proximal 1,440 bp of the HSP-72 promoter. Elevating [K(+)](e) from 20 to 50 mM increased HSP-72 protein expression and promoter activity but did not affect HSP-25, HSC-73, or HSP-90 levels. Addition of identical concentrations of sodium chloride did not increase HSP-72 expression to a similar amount. The Ca(2+) channel blocker diltiazem and the Ca(2+)-specific chelator EGTA-AM abolished high [K(+)](e)-induced HSP-72 expression by 69.7 and 75.2%, respectively, indicating that the transcriptional induction of HSP-72 involves Ca(2+) influx. As measured by confocal microscopy using the Ca(2+) dye fluo 3-AM, we also observed a rapid increase of intracellular Ca(2+) concentration as early as 30 s after placing LLC-PK(1) cells in high [K(+)](e). We further analyzed whether Ca(2+) influx was necessary for induction of HSP-72 expression by high [K(+)](e) using Ca(2+)-free medium. Here, induction of HSP-72 in response to high [K(+)](e) was completely abolished. Our data thus demonstrate activation of a protective cellular response to ionic stress, e.g., elevated K(+) concentrations, by specifically increasing protein levels of HSP-72.
منابع مشابه
Urotensin II is an autocrine/paracrine growth factor for the porcine renal epithelial cell line, LLCPK1.
Urotensin-II (UII), a cyclic dodecapeptide with potent cardiovascular effects, has recently been shown to be abundantly expressed in the human kidney and excreted in human urine. To investigate whether UII acts as an autocrine/paracrine growth factor for renal epithelial cells, we have studied the effects of human UII (hUII) on DNA synthesis, cytosolic free Ca(2+) concentration ([Ca(2+)](i)), E...
متن کاملCaveolin‐1 enhances rapid mucosal restitution by activating TRPC1‐mediated Ca2+ signaling
Early rapid mucosal restitution occurs as a consequence of epithelial cell migration to reseal superficial wounds, a process independent of cell proliferation. Our previous studies revealed that the canonical transient receptor potential-1 (TRPC1) functions as a store-operated Ca(2+) channel (SOCs) in intestinal epithelial cells (IECs) and regulates epithelial restitution after wounding, but th...
متن کاملPolyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca²+ signaling by differentially modulating STIM1 and STIM2.
Early epithelial restitution occurs as a consequence of intestinal epithelial cell (IEC) migration after wounding, and its defective regulation is implicated in various critical pathological conditions. Polyamines stimulate intestinal epithelial restitution, but their exact mechanism remains unclear. Canonical transient receptor potential-1 (TRPC1)-mediated Ca(2+) signaling is crucial for stimu...
متن کاملRhoA enhances store-operated Ca entry and intestinal epithelial restitution by interacting with TRPC1 after wounding
Chung HK, Rathor N, Wang SR, Wang JY, Rao JN. RhoA enhances store-operated Ca entry and intestinal epithelial restitution by interacting with TRPC1 after wounding. Am J Physiol Gastrointest Liver Physiol 309: G759–G767, 2015. First published September 3, 2015; doi:10.1152/ajpgi.00185.2015.—Early mucosal restitution occurs as a consequence of epithelial cell migration to resealing of superficial...
متن کاملRhoA enhances store-operated Ca2+ entry and intestinal epithelial restitution by interacting with TRPC1 after wounding.
Early mucosal restitution occurs as a consequence of epithelial cell migration to resealing of superficial wounds after injury. Our previous studies show that canonical transient receptor potential-1 (TRPC1) functions as a store-operated Ca(2+) channel (SOC) in intestinal epithelial cells (IECs) and plays an important role in early epithelial restitution by increasing Ca(2+) influx. Here we fur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 281 2 شماره
صفحات -
تاریخ انتشار 2001